極限環境技術特集

# 産業界における高真空、電子、プラズマ技術

High Vacuum, Electron, and Plasma Technology in Industry

<del>坪井 秀夫</del> TSUBOI Hideo

高真空やプラズマは、半導体や電子部品の製造において必要不可欠な技術である。高真空は相当に低い圧 力である。プラズマ中の電子は素粒子の一種である。また電子は中性粒子と衝突し、イオンを作り、プラズ マを生成する。本稿では産業界で利用される高真空、電子およびプラズマについて説明する。

High vacuum and plasma are indispensable technologies in the manufacturing of semiconductors and electronic devices. A high vacuum is a considerably low pressure. Electrons in plasma are a type of elementary particle. Electrons also collide with neutral particles to make ions, which produce plasma. This article describes, the high vacuum, electrons, and plasma used in industry.

#### キーワード:高真空技術、電子、プラズマ生成、プラズマ技術

# 1 はじめに

極限環境技術と聞いて、まず高真空や超高真空 が頭に浮かんだ。真空技術は半導体や電子部品製 造の分野で広く利用されている。次に頭に浮かん だのが電子である。これも半導体や電子部品製造 の分野で広く利用されているプラズマの中に存在 する。極限という言葉を広辞苑(第三版)で引い てみると「ぎりぎりのところ。はて。」とある。 真空容器内の気体を真空ポンプで排気して行く と, 容器内の圧力は中真空領域から高真空領域に 入り、次には超高真空領域に近づいて行く。超高 真空領域が極限とか、はてと呼ぶに相応しい圧力 領域であろう。ただし本稿では、現在の日本産業 規格(JIS)の定義に則り、高真空について記述 する。高真空は相当に圧力の低い状態であり、真 空容器内で表面処理を施されるシリコンウエハ等 の基板にとっては、そのような条件の環境という ことになる。

電子は素粒子の一種である。素粒子とは「知られている限りでは、それより簡単な粒子から構成 されてはいない粒子のこと」と物理学辞典にある<sup>1)</sup>。電子は極限、はてといった言葉に相当する 粒子である。半導体や電子部品製造の分野では、 真空のプラズマが広く利用されており、そのプラ ズマ中には電子が存在する。電子は中性粒子に衝 突し、イオンを作り、プラズマを生成する。本稿 では,産業界において必要不可欠な高真空,電子,および電子が作るプラズマについて説明する。

### 2 高真空技術

超高真空というと、以前は1×10<sup>-5</sup> Pa以下 の圧力を指していた<sup>2)</sup>。しかし現在では、1× 10<sup>-6</sup> Pa未満で1×10<sup>-9</sup> Pa以上の圧力領域と JISでは定義されており、高真空領域が広くなっ た<sup>3)</sup>。真空の状態は、その圧力領域により5つの 領域に区分される。**表1**において、1994年当時 の区分と、2021年9月(現在)の区分の両方を 示す。現在の区分において、標準大気圧は 1.013×10<sup>5</sup> Paなので、高真空と超高真空の境 界は大気圧の10<sup>11</sup>分の1であり、これは相当に 低い圧力である。

半導体製造用プラズマ装置においては次のよう なプロセスの流れを実施している。まず真空容器 (チャンバ)内を,現在の区分で超高真空領域に 近い側の高真空領域まで排気する。次にプロセス に必要なガスをチャンバ内に導入して圧力を設定 し,電力を供給してプラズマを生成し,成膜や エッチング等のプロセスを実施する。プロセスが 終わると電力を止め,ガス導入を止め,チャンバ を超高真空に近い側の高真空領域まで排気し,次 のプロセスに対応する。このように産業界では高 真空技術が利用されている。

| 用語   | 領域 1994年当時                     | 定義JIS 2021年9月<br>現在                                      |
|------|--------------------------------|----------------------------------------------------------|
| 低真空  | 圧力100 Pa以上                     | 大気圧未満,<br>100 Pa以上の真空                                    |
| 中真空  | 圧力100~0.1 Pa                   | 圧力 100 Pa未満,<br>0.1 Pa以上の真空                              |
| 高真空  | 圧力0.1~10 <sup>-5</sup> Pa      | 圧力0.1 Pa未満,<br>1×10 <sup>-6</sup> Pa以上の真空                |
| 超高真空 | 圧力10 <sup>-5</sup> Ра以下        | 圧力1×10 <sup>-6</sup> Pa未満,<br>1×10 <sup>-9</sup> Pa以上の真空 |
| 極高真空 | 当時は, JISではま<br>だ認められていな<br>かった | 圧力1×10 <sup>-9</sup> Pa未満の<br>真空                         |

#### 表1 以前と現在の真空の圧力領域<sup>2)3)</sup>

真空を考える場合大切な概念がある。それは, 真空は分子流と粘性流(連続流)に大別できると いうことである<sup>2)</sup>。分子流の特徴は図1(a)に 示すように,運動する気体分子が衝突する相手が 主にチャンバ壁であるということである。一方粘 性流は,図1(b)に示すように,気体分子同士 の衝突が頻繁に起きる状態である。よって,分子 流は粒子モデルで,粘性流は連続流(流体)モデ ルで近似できる。



粒子モデルと流体モデルを分けるものは圧力の みではない。図1(a)の分子流において、気体 分子から見てチャンバ壁までの距離が十分に長い と、低圧力であっても粒子が運動している間に粒 子同士の衝突が何度も起こり、連続流(流体)に なる。そこで、粒子モデルと流体モデルを分ける パラメータが必要になるが、それがクヌーセン (Knudsen)数である<sup>4)</sup>。クヌーセン数Knは平 均自由行程 $\lambda$ と系の代表長さLの比で定義される (Kn =  $\lambda$  /L)。図1(b)に示すように、分子同 士の衝突と衝突の間の距離の平均が平均自由行程 である。また代表長さは配管の直径等である。

## 3 電子のふるまいと産業界のプラズマ

半導体や電子部品製造の業界で利用される真空 のプラズマは、中性粒子の温度が低く電子温度が 高い、いわゆる非平衡プラズマである。このよう なプラズマを生成するのは大抵の場合電子であ る。電子が中性粒子に衝突し、電子を1つ弾き飛 ばすことで中性粒子を電離(イオン化)させ、イ オンを生成する。図2(a)は電子がアルゴン原 子に衝突し、アルゴンイオンが生成される場合で ある<sup>5)</sup>。一方図2(b)に示すように、電子が エッチングガスであるCF4に衝突する場合は複 雑で、イオンやラジカルを数種類生成する、即ち 電離と解離(ラジカル生成)が生じる<sup>6)</sup>。プラズ マ中の電子のエネルギーは揃っている訳ではな く、分布しており、平均的なエネルギーという意 味で電子温度という言葉が用いられる。



次にプラズマプロセシングにおけるエッチング の例を見てみよう。装置パラメータである RFパ ワー,圧力,ガス流量等を設定し,プラズマを生 成してこれを基板に照射し,表面をエッチングす る。結果,エッチング速度やエッチング形状等と いった結果が得られる。しかしこれだけではプラ ズマ特性に関する情報は得られない。そこで,装 置やプロセスの開発を支援する目的で,プラズマ 計測を実施する。プラズマの性質を表すプラズマ パラメータの中でも,電子密度(プラズマ密度) n<sub>e</sub>と電子温度T<sub>e</sub>は特に重要である。図3はラン グミュアプローブを用いて測定された電流一電圧 (I-V)特性である。このI-V特性を解析してT<sub>e</sub>と n<sub>e</sub>を求める。

電子エネルギー分布関数がマクスウェル・ボル ツマン分布(Maxwellian)の場合は、電子温度 を求める領域(図3中の補助線)が直線になる。



図4 サイクロトロン運動と反磁性のイメージ 図3(a)はMaxwellianである。図3(b)の場 合は、電子温度を求める領域において直線が2本 引けるが、これはプラズマ中の電子の集団が、 bulkとtailという2つ成分から成ることを示し ている(bi-Maxwellian)。プラズマ中には密度 の高い集団のbulkから離れて存在し、かつ高エ ネルギーで密度の低い集団のtail成分ができる場 合がある<sup>7)8)</sup>。

### 4 産業界におけるプラズマ装置

#### 4.1 磁化プラズマの特徴,反磁性

産業界においては、外部から磁場を印加するタ イプの磁化プラズマが広く用いられる。磁場があ るとローレンツ力により、電子やイオンはサイク ロトロン運動(ラーモア運動)と呼ばれる旋回運 動をする。図4において、磁力線の矢(実線)の 後方に立ち、矢の先端の方を見た場合の荷電粒子 のサイクロトロン運動を考える。電子は磁力線の 周りを右回りに小さく旋回する。一方正イオンは 左回りに大きく旋回する。一方正イオンは 左回りに大きく旋回する。図4において、電子サ イクロトロン角周波数ω<sub>ce</sub>は、素電荷をe、磁場 (磁束密度)をB(図4中のB<sub>0</sub>)、電子の質量を m<sub>e</sub>とすると、ω<sub>ce</sub>=eB/m<sub>e</sub>である<sup>9)</sup>。電子と正 イオンの運動で、プラズマ中に電流が生じる。こ のプラズマ電流が作る小さい磁場B<sub>d</sub>(点線)は、外部から印加した磁場B<sub>0</sub>を打ち消す方向に発生するため、プラズマは反磁性といわれる<sup>9)</sup>。

### 4.2 プラズマ源 その1:NLDプラ ズマ

磁気中性線放電(magnetic Neutral Loop Discharge:NLD) プラズマは 誘導放電に磁場を印加したタイプであ り、その磁場配位に特長がある<sup>10)</sup>。 NLDは核融合研究で見つかった現象 が、半導体・電子部品製造装置に応用 された例である。図5(a)にNLDプラ ズマ装置の構造を示す<sup>11)</sup>。NLDは誘電 体チャンバの外周に一巻きのRFアンテ

ナを設置し、その外周に3段の電磁石を 配置する構造である。Top coilとBottom coil に同じ向きの電流を流し, Middle coilにこれら に対して逆向きの電流を流すとゼロ磁場のループ がチャンバ内にできる。このループの近傍に誘導 電流を流すことでNLDプラズマを生成する。 NLDプラズマ源の下流(図中の下部)に基板が 装填される。NLDはドーナツプラズマを生成で きるので、Siウエハのような丸い基板を処理する 場合、面内均一性を向上できる。Middle coil電 流を変化させれば、このドーナツの半径を変える ことができ、プロセス上最適なドーナツ半径を設 定できる。図5(b)は、NLDのドーナツのAr プラズマを装置の下部から撮影した写真であ る<sup>10)</sup>。ドーナツプラズマの外周には磁場の壁が あるため、ドーナツの外周にある電子はこの磁気 壁にトラップされる。よって、磁気壁の中のドー ナツプラズマは、電子にとっては動き易い流路の ような空間となり、このドーナツに沿って電子電 流が流れる。

#### 4.3 プラズマ源 その2:ECRプラズマ

図5(a)のNLDプラズマ源を電子サイクロト ロン共鳴(Electron Cyclotron Resonance: ECR)プラズマに乗せ換えた場合を考える。電



#### 図5 (a) NLDプラズマ装置と(b) NLDプラズマの写真<sup>10)11)</sup>

子サイクロトロン運動の周波数f<sub>ce</sub>(=ω<sub>ce</sub>/2π) と、プラズマへ導入するマイクロ波の周波数fを 一致させればECRという共鳴現象が起きる。 マイクロ波の周波数fが2.45 GHzの場合、ECR 条件となる磁場Bは0.0875 Tである。では 2.45 GHzのマイクロ波を使用し、チャンバ内に 0.0875 Tの磁場を設ければECRプラズマが効 率良く生成できるかというと実はそうではない。 ECR条件より強磁場側からマイクロ波を導入し ないと効率良くECRプラズマを生成できないこ のことは、CMA (Clemmow-Mullaly-Allis) 図 が教えてくれる<sup>9)</sup>。CMA図は磁化プラズマ中の 4種類の波動(右円偏波、左円偏波、正常波、異 常波)を1枚の図にまとめた有益なものである が、その内容はかなり難しい。

## **5** おわりに

極限環境技術として,高真空,電子のふるま い,そして電子が生成するプラズマを例に取り説 明した。半導体や電子部品製造の分野において, これらが重要な役割を担っていることをご理解い ただけたならば幸いである。近年,真空のプラズ マに限らず大気圧プラズマも注目を集めている。 大気圧プラズマを産業に応用する場合でも,真空 のプラズマで得られた知見は有益なものとなるで あろう。筆者は化学部門の技術士で日本技術士会 の副会長であられた故本田尚士先生から, π型 人間になることの重要性を教わった。プラズマ技 術と真空技術をπ型の2本の足に定め,活動して いる。

#### <参考文献>

1)清水忠雄,清水文子 監訳:「ロングマン物理学辞

典」, p.349, 朝倉書店, 1998 年2月10日初版第1刷

- 2)中山勝矢:「新版 真空技術実務 読本」,pp. 4-5,13,オーム 社,1994年5月20日 第1版 第1刷発行
- 3)日本規格協会:「JIS 真空技術 一用語一第1部:一般用語, JIS Z8126-1:2021」, pp.2-3, 2021年9月21日改正
- 4) 楠本淑郎:「無次元数から見た化学気相成長法の流れ」,真空,第40巻第2号,pp.69-76, 1997年
- 5) 進藤春雄: 「3. 身近にあるプラズマの応用例」, 公益社団法人日本技術士会応用理学部会創立15 周年記念シンポジウム講演集, p.69, 2016年 11月13日
- 6) 菅井秀郎 編著:「インターユニバーシティ プラ ズマエレクトロニクス」、オーム社、pp. 4, 5, 136,2000年8月25日第1版第1刷発行
- H. Tsuboi, et al.: "Observation of Induction Power Dependence on the Magnetic Neutral Loop Discharge Plasma Thermalization Phenomena", Jpn. J. Appl. Phys. 36, pp.6540-6544, 1997.
- 8) 坪井秀夫:博士学位論文,「磁気中性線放電プラ ズマの生成・制御と微細加工への応用に関する研 究」, pp. 112, 118,名古屋大学,2012年3 月を基に作成
- 9)後藤憲一:「プラズマ物理学」, pp.12, 55-56, 134-136, 共立出版, 1967年6月1日初版1 刷発行
- H. Tsuboi, et al.: "Usefulness of Magnetic Neutral Loop Discharge Plasma in Plasma Processing", Jpn. J. Appl. Phys. 34, pp.2476-2481. 1995.
- H. Tsuboi and S. Ogata: "Observation of Characteristics of Magnetic Neutral Loop Discharge Plasma Appearing at Antenna in RF Circuit", Jpn. J. Appl. Phys. 46, pp.7475-7477, 2007.

**坪井 秀夫** (つぼい ひでお) 技術士 (応用理学部門)

合同会社 坪井技術コンサルタント事務所 代表社員 応用理学部会 幹事 博士(工学)名古屋大学論文博士 e-mail:h.tsuboi.ce@mopera.net

